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1 Synchronized Chaos and Data Assimilation

1.1 Synchronized chaos

Synchronization of weakly coupled oscillators has been known since the time of Huy-
gens (1673), who observed that pendulum clocks hung on a common wall tend to fall
into antisynchronized motion. Synchronization of regular oscillators with limit cycle
attractors is in fact ubiquitous in Nature (Strogatz 2003). Only recently however, has
the synchronization of chaotic oscillators become known. The phenomenon was first
brought to light by Fujisaka and Yamada (1983) and independently by Afraimovich,
Verichev, and Rabinovich (1987), but extensive research on the subject in the ’90s was
spurred by the seminal work of Pecora and Carroll (1991), who considered configura-
tions such as the following combination of Lorenz systems:

Ẋ = σ(Y −X)

Ẏ = ρX − Y −XZ

Ż = −βZ +XY

Ẏ1 = ρX − Y1 −XZ1 (1)

Ż1 = −βZ1 +XY1

which synchronizes rapidly, slaving the Y1, Z1-subsystem to the master X,Y, Z-
subsystem, as seen in Fig. 17.1, despites differing initial conditions and despite sensitive
dependence on initial conditions.

If we imagine that the first Lorenz system represents the world, and that the second
Lorenz system is a predictive model, then synchronization effects data assimilation
(Daley 1991) of observed variables into the running model. The only observed variable
in the foregoing example isX , but that is sufficient to cause the desired convergence of
model to truth. Synchronization is known to be tolerant of reasonable levels of noise, as
might arise in the observation channel, and occurs with partial coupling schemes that
do not completely replace a model variable with a variable of the observed system.
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Specifically, systems can also synchronize when coupled diffusively, as with a pair
of bidirectionally coupled Rossler systems:

Ẋ = −Y − Z + α(X1 −X)

Ẏ = X + aY

Ż = b+ Z(X − c)

Ẋ1 = −Y1 − Z1 + α(X −X1)

Ẏ1 = X1 + aY1 (2)

Ż1 = b+ Z1(X1 − c)

where α parametrizes the coupling strength. Contrary to naive expectations, the ten-
dency to synchronize does not increase monotonically with α, but synchronization will
indeed occur for sufficiently large α. The diffusive coupling also works unidirection-
ally.

For a pair of coupled systems that are not identical, synchronization may still oc-
cur, but the correspondence between the states of the two systems in the synchronized
regime is different from the identity. In this situation, known as generalized synchro-
nization, we have two different dynamical systems

ẋ = F (x) (3)

ẏ = G(y) (4)

with x ∈ RN and y ∈ RN . If the dynamics are modified so as to couple the systems:

ẋ = F̂ (x,y) (5)

ẏ = Ĝ(y,x) (6)

the systems are said to be generally synchronized iff there is some invertible function
Φ : RN → RN such that ||Φ(x) − y|| → 0 as t → ∞. Identical synchronization
may be transformed to generalized synchronization simply by a change of variables

Fig. The trajectories of the synchronously coupled Lorenz systems in the Pecora-Carroll
replacement scheme (1) rapidly converge (a). Differences between corresponding vari-

zero (b).
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in one system, but not the other, i.e. a change in the description of one of the systems
(Rulkov, Sushchik, and Tsimring 1995). In this situation, the correspondence function
Φ is known a priori. Generalized synchronization may be difficult to detect without
prior knowledge of Φ.

Synchronization reduces the effective dimension of the phase space by half. Once
synchronized, the 6-dimensional system (2) evolves in an 3-dimensional hyperplane,
and is further constrained, as t → ∞, to evolve on a strange attractor within that
hyperplane. (For the coupled Lorenz systems (1), an auxiliary variable X1 could be
added, satisfying Ẋ1 = σ(Y1 − X1), to define a system that is 6-dimensional before
synchronization.) With generalized synchronization of nonidentical systems, the hy-
perplane becomes a synchronization manifold defined by an invertible correspondence
function Φ : RN → RN . The N -dimensional manifold in 2N -dimensional space is
M ≡ {(p, Φ(p))|p ∈ RN}. The synchronization manifold is dynamically invariant:
If x(t) is a trajectory of a system such as (1) or (2), for x ∈ R2N , and x(t1) ∈ M,
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then x(t2) ∈ M for all t2 > t1. That is, a perfectly synchronized system remains
synchronized.

It is commonly not the existence, but the stability of the synchronization manifold
that distinguishes coupled systems exhibiting synchronization from those that do not
(such as (2) for different values ofα).N Lyapunov exponents can be defined for pertur-
bations in the N -dimensional space that is transverse to the synchronization manifold
M. If the largest of these, h⊥max, is negative, then motion in the synchronization man-
ifold is stable against transverse perturbations. In that case, the coupled systems will
synchronize for some range of differing initial conditions. However, since h⊥

max only
determines local stability properties, the size of the basin of attraction for the syn-
chronized regime remains unknown. As h⊥max is increased through zero, the system
undergoes a blowout bifurcation. For small positive values of h⊥

max, on-off synchro-
nization occurs (a special case of on-off intermittency), as illustrated in Fig. 17.2b, where
degradation results from a time lag in the coupling.

Synchronization is surprisingly easy to arrange, occurring for a wide range of cou-
pling types. Synchronization degrades through on-off intermittency or through gener-
alized synchronization. In the former case, vestiges of synchronization are discernible
even far from the blowout bifurcation point (Duane 1997). Generalized synchroniza-
tion is known to occur even when the systems are very different, as in the case of a
Lorenz system diffusively coupled to a Rossler system. The two systems with attrac-
tors of different dimension are known to synchronize, but the correspondence function
is not smooth (Pecora, Carroll, Johnson, Mar, and Heagy 1997).

The phenomenon of chaos synchronization is not restricted to low-dimensional
systems. It is known, for instance, that two D-dimensional Generalized Rossler sys-
tems (each equivalent to a Rossler system for D = 3) will synchronize for any D, no
matter how large, when coupled via only one of the D variables:



ẋA1 = −xA2 + αxA1 + xB1 − xA1

ẋAi = xAi−1 − xAi+1

ẋAD = ε+ βxAD(xAD−1 − d)

ẋB1 = −xB2 + αxB1 + xA1 − xB1

ẋBi = xBi−1 − xBi+1 i = 2 . . .D − 1 (7)

ẋBD = ε+ βxBD(xBD−1 − d)

Each system has an attractor of dimension ≈ D − 1, for D greater than about 40,
and a large number of positive Lyapunov exponents that increases with D.

The existence of synchronized chaos in naturally occuring systems was made more
plausible by demonstrations of synchronization in spatially extended systems gov-
erned by PDE’s (Kocarev, Tasev, and Parlitz 1997) Synchronization in geophysical
fluid models was demonstrated by Duane and Tribbia (2001), originally with a view
toward predicting and explaining new families of long-range teleconnections (Duane
and Tribbia, 2004). Their findings are discussed in Section 3.2.
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a) b)
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Fig. 17.2. The difference between the simultaneous states of two Lorenz systems with time-lagged
coupling, represented by Z(t)−Z1(t) vs. t for various values of the inverse time-lag Γ illustrat-
ing complete synchronization (a), intermittent or “on-off” synchronization (b), partial synchro-
nization (c), and de-coupled systems (d). Average euclidean distance 〈D〉 between the states
of the two systems in X,Y, Z-space is also shown. The trajectories are generated by adaptive
Runge-Kutta numerical integrations with σ = 10., ρ = 28., and β = 8/3.
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Fig. 17.3. Diagram constructed by Carl Jung, later modified by Wolfgang Pauli, to suggest rela-
tionships based on synchronicity as an “acausal connecting principle”, existing alongside causal
relationships.

1.2 Synchronization-based data assimilation and Jungian synchronicity

Since the problem of data assimilation arises in any situation requiring a computational
model of a parallel physical process to track that process as accurately as possible
based on limited input, it is suggested here that the broadest view of data assimilation is
that of machine perception by an artificially intelligent system. Like a data assimilation
system, the human mind forms a model of reality that functions well, despite limited
sensory input, and one would like to impart such an ability to the computational model.
In the artificial intelligence view of data assimilation, the additional issue of model
error can be approached naturally as a problem of machine learning, as discussed in
the concluding section.

In this more general context, the role of synchronism is reminiscent of the psychol-
ogist Carl Jung’s notion of synchronicity in his view of the relationship between mind
and the material world. Jung had noted uncanny coincidences or “synchronicities” be-
tween mental and physical phenomena. In collaboration with Wolfgang Pauli (Jung
and Pauli, 1955), he took such relationships to reflect a new kind of order connecting
the two realms. The new order was taken to explain relationships between seemingly
unconnected phenomena in the objective world as well, exising alongside the familiar
order based on causality (3). It was important to Jung and Pauli that synchronicities
themselves were distinct, isolated events, but as described in Sect. 1.1, such phenom-
ena can emerge naturally as a degraded form of chaos synchronization.

A principal question that is addressed in this chapter is whether the synchronization
view of data assimilation is merely an appealing reformulation of standard treatments,
or is different in substance. The first point to be made is that all standard data assim-
ilation approaches, if successful, do achieve synchronization, so that synchronization
defines a more general family of algorithms that includes the standard ones. It remains
to determine whether there are synchronization schemes that lead to faster convergence
than the standard data assimilation algorithms. It has been shown analytically that op-
timal synchronization is equivalent to Kalman filtering when the dynamics change
slowly in phase space, so that the same linear approximation is valid at each point in
time for the real dynamical system and its model. When the dynamics change rapidly,
as in the vicinity of a regime transition, one must consider the full nonlinear equations
and there are better synchronization strategies than the one given by Kalman filtering
or ensemble Kalman filtering. The deficiencies of the standard methods, which are well
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known in such situations, are usually remedied by ad hoc corrections, such as “covari-
ance inflation” (Anderson, 2001). In the synchronization view, such corrections can be
derived from first principles.

2 Synchronization vs. conventional data assimilation in the
nonlinear realm

2.1 Optimal coupling for synchronization

To compare synchronization to standard data assimilation, Duane, Tribbia, and Weiss
(2006) inquired as to the coupling that is optimal for synchronization, so that this
coupling could be compared to the gain matrix used in the standard 3dVar and Kalman
filtering schemes. The general form of coupling of truth to model that we consider in
this section is given by a system of stochastic differential equations:

ẋT = f(xT )

ẋB = f(xB) + C(xT − xB + ξ) (8)

where true state xT∈R
n and the model state xB∈R

n evolve according to the same
dynamics, given by f , and where the noise ξ in the coupling (observation) channel
is the only source of stochasticity. The form (8) is meant to include dynamics f de-
scribed by partial differential equations, as in the last section. The system is assumed
to reach an equilibrium probability distribution, centered on the synchronization man-
ifold xB=xT . The goal is to choose a time-dependent matrix C so as to minimize the
spread of the distribution.

Note that if C is a projection matrix, or a multiple of the identity, then Eq. (8)
effects a form of nudging. But for arbitrary C, the scheme is much more general.
Indeed, continuous-time generalizations of 3DVar and Kalman filtering can be put in
the form (8).

Let us assume that the dynamics vary slowly in state space, so that the Jacobian
F≡Df , at a given instant, is the same for the two systems

Df(xB) = Df(xT ) (9)

where terms ofO(xB−xT ) are ignored. Then the difference between the two Eqs. (8),
in a linearized approximation, is

ė = Fe−Ce + Cξ (10)

where e≡xB−xT is the synchronization error.
The stochastic differential equation (10) implies a deterministic partial differential

equation, the Fokker-Planck equation, for the probability distribution ρ(e):

∂ρ

2
δ∇e · (CRC

T
∇eρ) (11)
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where R=<ξξT> is the observation error covariance matrix, and δ is a time-scale
characteristic of the noise, analogous to the discrete time between molecular kicks in
a Brownian motion process that is represented as a continuous process in Einstein’s
well known treatment. Equation (11) states that the local change in ρ is given by the
divergence of a probability current ρ(F−C)e except for random “kicks” due to the
stochastic term.

The PDF can be taken to have the Gaussian form ρ=N exp(−eTKe), where
the matrix K is the inverse spread, and N is a normalization factor, chosen so that
∫

ρdne=1. For background error covariance B, K=(2B)−1. In the one-dimensional
case, n=1, where C and K are scalars, substitution of the Gaussian form in Eq. (11),
for the stationary case where ∂ρ/∂t=0 yields:

2B(C − F ) = δRC2 (12)

Solving dB/dC=0, it is readily seen that B is minimized (K is maximized) when
C=2F=(1/δ)B/R.

In the multidimensional case, n>1, the relation (12) generalizes to the fluctuation-
dissipation relation

B(C − F)T + (C − F)B = δCRCT (13)

that can be obtained directly from the stochastic differential equation (10) by a stan-
dard proof that is reproduced in Appendix A. B can then be minimized element-wise.
Differentiating the matrix equation (13) with respect to the elements of C, we find

dB(C− F)T + B(dC)T + (dC)B + (C − F)dB

= δ[(dC)RCT + CR(dC)T ] (14)

where the matrix dC represents a set of arbitrary increments in the elements of C, and
the matrix dB represents the resulting increments in the elements of B. Setting dB=0,
we have

[B − δCR](dC)T + (dC)[B − δRCT ] = 0 (15)

Since the matrices B and R are each symmetric, the two terms in Eq. (15) are trans-
poses of one another. It is easily shown that the vanishing of their sum, for arbitrary dC,
implies the vanishing of the factors in brackets in Eq. (15). Therefore C=(1/δ)BR−1,
as in the 1D case.

2.2 Synchronization vs. conventional data assimilation in the linear realm

Turning now to the standard methods, so that a comparison can be made, it is recalled
that the analysis xA after each cycle is given by:

xA = R(R + B)−1xB + B(R + B)−1xobs

= xB + B(R + B)−1(xobs − xB) (16)

297



In 3dVar, the background error covariance matrix B is fixed; in Kalman filtering it is
updated after each cycle using the linearized dynamics. The background for the next
cycle is computed from the previous analysis by integrating the dynamical equations:

xn+1

B = xnA + τf(xnA) (17)

where τ is the time interval between successive analyses. Thus the forecasts satisfy a
difference equation:

xn+1

B = xnB + B(R + B)−1(xnobs − xnB) + τf(xnA) (18)

We model the discrete process as a continuous process in which analysis and forecast
are the same:

ẋB = f(xB) + 1/τB(B + R)−1(xT − xB + ξ)

+ O[(B(B + R)−1)2] (19)

using the white noise ξ to represent the difference between observation xobs and truth
xT . The continuous approximation is valid so long as f varies slowly on the time-scale
τ .

It is seen that when background error is small compared to observation error,
the higher order terms O[(B(B+R)−1)2] can be neglected and the optimal coupling
C=1/δBR−1 is just the form that appears in the continuous data assimilation equa-
tion (19), for δ=τ . Thus under the linear assumption that Df(xB)=Df(xT ), the syn-
chronization approach is equivalent to 3dVar in the case of constant background error,
and to Kalman filtering if background error is dynamically updated over time. The
equivalence can also be shown for an exact description of the discrete analysis cy-
cle, by comparing it to a coupled pair of synchronized maps. See Duane et al. (2006)
Appendix B.

2.3 Universal covariance inflation factors in the nonlinear realm

In the fully nonlinear case, the optimal coupling scheme for synchronization may differ
from that used in standard data assimilation methods.

In a region of state space where nonlinearities are strong and Eq. (9) fails, the prog-
nostic equation for error (10) must be extended to incorporate nonlinearities. Addition-
ally, model error due to processes on small scales that escape the digital representation
should be considered. While errors in the parameters or the equations for the explicit
degrees of freedom require deterministic corrections, the unresolved scales, assumed
dynamically independent, can only be represented stochastically. The physical system
is governed by:

ẋT = f(xT ) − ξM (20)

in place of Eq. (8a), where ξM is model error, with covariance Q≡<ξMξ
T
M>. The

error equation (10) becomes

ė = (F −C)e +Ge2 +He3 + Cξ + ξM (21)
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where we have included terms up to cubic order in e, with H<0 to prevent divergent
error growth for large ||e||. In the multi-dimensional case, Eq. (21) is shorthand for
a tensor equation in which G and H are tensors of rank three and rank four (and the
restrictions on H are more complex). In the one-dimensional case, which we shall
analyze here, G and H are scalars.

The Fokker-Planck equation is now:

∂ρ

2
δ∇e · [(CRC

T
+Q)∇eρ] (22)

Using the ansatz for the PDF ρ:

ρ(e) = N exp(−Ke
2
− Le

3
−Me

4
) (23)

with a normalization factor N = [
∫

∞

−∞ de exp(−Ke
2
− Le

3
−Me

4
)]
−1

, we obtain
from Eq. (22) the following relations between the dynamical parameters and the PDF
parameters:

F − C =
1

2
τ(C

2
R+Q)(−2K)

G =
1

2
τ(C

2
R+Q)(−3L) (24)

H =
1

2
τ(C

2
R+Q)(−4M)

The goal is to minimize the background error:

B(K,L,M) =

∫

∞

−∞ de e
2
exp(−Ke

2
− Le

3
−Me

4
)

∫

∞

−∞ de exp(−Ke
2
− Le

3
−Me

4
)
. (25)

Using Eq. (24) to express the arguments of B in terms of the dynamical parameters,
we find B(K,L,M)=B(K(C), L(C),M(C))≡B(C), and can seek the value of C
that minimizes B, for fixed dynamical parameters F,G,H .

The coupling that gives optimal synchronization can again be compared with the
coupling used in standard data assimilation, as for the linear case. In particular, one
can ask whether the “covariance inflation” scheme that is used as an ad hoc adjustment
in Kalman filtering (Anderson 2001) can reproduce the C values found to be optimal
for synchronization. The form C=τ

−1
B(B+R)

−1
is replaced by the adjusted form

C =
1

τ

FB

FB +R
(26)

where F is the covariance inflation factor.
The optimization problem was solved numerically in the one-dimensional case

(Duane et al. 2006) with results as plotted in Table 17.1. If the function f in the dy-
namical equation describes motion in a two-well potential, with minima at distances
d1 and d2 from the unstable fixed point, it can be shown that the dynamical parameters
in (21) are s G=1/d2−1/d1 andH=−1/(d1d2). Results are displayed in the table for
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Table 17.1. Covariance infl ation factor vs. bimodality parameters d1, d2, for 50% model error in
the resolved tendency.

d1

.75 1. 1.25 1.5 1.75 2.
.75 1.26 1.26 1.28 1.30 1.32 1.34

1. 1.26 1.23 1.23 1.25 1.27 1.29
d2 1.25 1.28 1.23 1.22 1.23 1.24 1.25

1.5 1.30 1.25 1.23 1.22 1.23 1.24
1.75 1.32 1.27 1.24 1.23 1.23 1.23

2. 1.34 1.29 1.25 1.24 1.23 1.23

a range of values of the bimodality parameters d1 and d2. The model error in Eq. (20)
is chosen to be about 50% of the resolved tendency ẋT , with the resulting model error
covariance Q=0.04 approximately one-fourth of the background error covariance B.
The covariance inflation factors are remarkably constant over a wide range of param-
eters and agree with typical values used in operational practice.

3 Automatic parameter estimation and model learning

3.1 Identical synchronization implies parameter estimation for non-identical
systems

Machine learning might also be realized in the synchronization context, so as to correct
for deterministic model error in the resolved degrees of freedom. By allowing model
parameters to vary slowly, generalized synchronization would be transformed to more
nearly identical synchronization. Indeed, parameter adaptation laws can be added to a
synchronously coupled pair of systems so as to synchronize the parameters as well as
the states. Parlitz (1996) showed for example that two unidirectionally coupled Lorenz
systems with different parameters:

Ẋ = σ(Y −X)

Ẏ = ρX − Y −XZ

Ż = −βZ +XY

Ẋ1 = σ(Y −X1)

Ẏ1 = ρ1X1 − νY1 −X1Z1 + µ (27)

Ż1 = −βZ1 +X1Y1

could be augmented with parameter adaptation rules:

ρ̇1 = (Y − Y1)X1

ν̇ = (Y1 − Y )Y1 (28)

µ̇ = Y − Y1

so that the Lorenz systems would synchronize, and additionally ρ1→ρ, ν→1, and
µ→0.
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Equations for a synchronously coupled pair of systems can in fact always be aug-
mented to allow parameter adaptation as well, provided that relevant dynamical vari-
ables are observed, as shown by Duane, Yu, and Kocarev (2007). Consider a “real
system” given by ODE’s:

ẋ = f(x, p), (29)

ṗ = 0, (30)

where x ∈ IRN , f : IRN → IRN , and p ∈ IRm is the vector of (unknown, constant)
parameters of the system. We further assume that s = h(x), where h : IRN → IRn,
n ≤ N , is an n dimensional vector representing the experimental measurement output
of the system. A “computational model” of the system (29) is given by:

ẏ = f (y, q) + u(y, s), (31)

q̇ = N (y, x − y), (32)

where N (y, 0) = 0, and u is the control signal. Let e ≡ y − x and r ≡ q − p. Choose
a positive definite Lyapunov function Lo(e)|q=p. Assume that the control signal u is
designed such that there is some time t0 for which L̇o(e(t))|q=p < 0 when e(t) 6= 0

and L̇o(e(t))|q=p = 0 when e(t) = 0, for all t > t0. That is, after time t0, the system
proceeds monotonically toward synchronization. Let h ≡ f (y, r + p) − f (y − e, p).
Duane et al. (2007) established the following theorem:

Theorem 1. Assume that (i) the control law u in (31) is designed such that the syn-
chronization manifold x = y is globally asymptotically stable, (ii) f is linear in the
parameters p, and (iii) the parameter estimation law (32) is designed such that

Nj = −δj
∑

i

(

∂Lo

∂rj

)

,

where δj are positive constants. Then the synchronization manifold y = x, p = q is
globally asymptotically stable.

The theorem ensures the stability of the synchronization manifold y = x, p = q. It
says that if the two systems synchronize for the case of identical parameters, then
the parameters of the “real system” can be estimated when they are not known a
priori, provided that each partial derivative ∂Lo/∂ei is known for which the vector
∂hi/∂rj (j = 1, ....) is not zero. For the usual form Lo ≡

∑

i(ei)
2
, the requirement

is that xi be known if the equation for ẏi contains parameters that one seeks to es-
timate. By considering a more general Lyapunov function that is defined in terms of
some subset S of the state variables, or their indices, Lo ≡

∑

i∈S ci(ei)
2

for posi-
tive coefficients ci, one obtains the looser requirement for each desired parameter, that
xi be known for at least some i for which the ẏi equation contains that parameter.
(Convergence may be slower if fewer xi are known.)
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3.2 Parameter estimation in geophysical fluid models

Generalizations to PDEs would allow parameters in geophysical models to automat-
ically adapt. In general, some of the partial derivatives ∂Lo/∂ei may not be known
and Theorem 1 may be inapplicable. The theorem gives us no way to estimate the pa-
rameters ρ or b for the Lorenz system, for instance, if only x1 is coupled, while x2

and x3 (hence ∂Lo/∂e2 and ∂Lo/∂e3) are unknown. But in the case of translationally
invariant PDE’s, the parameters are the same at each point in space. In general, they
can be estimated from a limited amount of information about the state at a discrete set
of points (or for a finite set of Fourier components), if such information is also suffi-
cient to give identical synchronization globally or locally when coupled to a “model
system”. Consider a pair of spatially extended systems that are synchronously coupled
in one direction:

∂φA

∂t
+ Γ (φ

B
) + C(φ

A
, φ
B

) = f
B
F (φ

B
, φ
A
), (33)

where Γ is some general form in the field φ, possibly involving spatial derivatives, C
is a similarly general form coupling φ

B
to φ

A
, such that C(φ, φ) = 0, and the form F

with coefficient f specifies a “forcing”, which in general may also couple to the other
system. The two systems are dynamically identical when φ

A
= φ

B
and f

A
= f

B
.

Define a core Lyapunov functionLo(φ
A
−φ

B
)|fA

=f
B ≡

∫

d
3
x (φ

A
−φ

B
)
2
. Then

a ready generalization of Theorem 1, to the case of a continuum of state variables tells
us that if we impose the parameter estimation law

ḟ
B

=

∫

d
3
x (φ

A
− φ

B
)F (φ

B
, φ
A
), (34)

we will find f
B
→ f

A
as in the ODE case.

The procedure outlined above estimates a coefficient of forcing for a wide class of
synchronously coupled PDE’s, and is readily generalized for limited measurements of
φ
A

. The quasigeostrophic potential vorticity equation, for instance, used to describe
the large-scale atmospheric circulation, has been shown to exhibit high-quality syn-
chronization when two copies are coupled via partial exchange of only mid-range
Fourier components of the flow field (Duane and Tribbia 2001, Duane and Tribbia
2004). The synchronization manifold is either globally attracting or locally attracting
in a very wide basin. Synchronization of such systems may be useful for meteoro-
logical data assimilation (Duane 2003). It is important that forcing parameters in the
equation can also be estimated.

Consider a two-layer channel model (derived from one described by Vautard et
al. (1988)), with flow evolution given by the quasigeostrophic equation for potential
vorticity q on a β-plane:

Dql
Dt

≡
∂ql
∂t

+ J(ψl, ql) = Fl +Dl (35) 302 Duane and Tribbia
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channel A channel B
n=10

a) b)

n=400

c) d)
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f

Fig. 17.4. The evolving fl ow ψ (a-f) for two quasigeostrophic channel models that are syn-
chronously coupled as in (Duane and Tribbia 2001; Duane and Tribbia 2004) (but in one
direction only), and with the forcing parameter fB for the second channel (denoted µo in
the reference) allowed to vary according to the truncated parameter adaptation rule (37) with
S = {k : kx,ky ≤ 12} (in waves per channel- length). Starting from the initial value fB = 3.0
at time step n = 0 (not shown), fB converges (g) to the value of the corresponding parameter
fA = 0.3 (dashed line) in the first channel, as the flows synchronize. (An average of the two
layers l = 1, 2 is shown.)

where the layer l=1, 2, ψ is streamfunction, and the Jacobian J(ψ, ·)= ∂ψ
∂x

∂·
∂y

−∂ψ
∂y

∂·
∂x

gives the advective contribution to the Lagrangian derivative D/Dt. Equation (35)
states that potential vorticity is conserved on a moving parcel, except for forcing Fl
and dissipation Dl. The discretized potential vorticity is ql = f0 + βy + ∇2ψl +
R−2

l (ψ1 − ψ2)(−1)i where f(x, y) is the vorticity due to the Earth’s rotation at each
point (x, y), f0 is the average f in the channel, β is the constant df/dy and Rl is
the Rossby radius of deformation in each layer. The forcing F is a relaxation term
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designed to induce a jet-like flow near the beginning of the channel: Fl=f(q∗l −ql) for
q∗l corresponding to a choice of ψ∗ that resembles the flow in Fig. 17.4a, for example.



The dissipation terms D, boundary conditions, and other parameter values are given in
Duane and Tribbia (2004). One might seek to estimate the coefficient f .

Consider two systems, “A” and “B”, both given by equations of the form (35), but
with the forcing in the B system defined differently, in terms of its spectral components
FB

k
, so as to effect a unidirectional coupling:

FB
k

= fB
∑

k

ak(q∗
k
− qB

k
) + fB

∑

k

bk(qA
k
− qB

k
) (36)

where the layer index l is suppressed and the coefficients ak, bk are slightly smoothed
step functions of k, so that each spectral component is either coupled to the corre-
sponding component in the A system or to the background flow q∗ or niether. The
coefficients are chosen so as to couple only the medium-scale components:

bk =







0 if |kx| ≤ kx0 and |ky| ≤ ky0
(kn/|k|)

4 if |k| > kn
1 − (k0/|k|)

4 otherwise

and to force only the large-scale components:

ak =

{

1 − bk if |k| ≤ kn
0 if |k| > kn

as in (Duane and Tribbia 2004), where the constants k0, kx0, ky0 and kn are defined.
The systems thus coupled synchronize, without bursting, as shown in Fig. 17.4. (The
forcing for the A system is correspondingly truncated: FA

k
= fA

∑

k
ak(q∗

k
− qA

k
).)

The parameter estimation rule in spectral space:

ḟB =
∑

k∈S

(qAk − qBk )[ak(q∗k − qBk ) + bk(qAk − qBk )] (37)

is the Fourier transform of (34) if S is universal. But even for a restricted range of
wavenumbers in S, as in the figure, the rule (37) causes fB to converge to fA as
would follow from the use of a correspondingly restricted Lyapunov function.

As a more realistic example than the channel model described above, the Weather
Research and Forecasting (WRF) model was considered, as adapted for weather pre-
diction over military test ranges for the Army Test and Evaluation Command (ATEC).
The ATEC application is based on observations that are so frequent that they can be
assumed to occur at every numerical time step, so that a continuously coupled differ-
ential equation system of the form (8) or (19) can be taken to reflect the actual data
assimilation scenario.

At a relevant level of model detail, the prognostic equation for humidity (water
vapor mixing ratio) q is:

∂q

∂z
{K(

∂q

∂z
−Mf(u0, T0, ...))} (38)
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where K is a moisture diffusivity, and M = M(x, y) quantifies the impact of soil
moisture at each location (x, y), which is a function f of state variables u0, T0, etc. at
the surface. To study the estimation of M using the synchronization method, attention
is restricted to a single vertical column (x, y) = (x0, y0) and a model is introduced
that is diffusively coupled to (“nudged” by) the true state. The model humidity q m, for
instance, is governed by:

∂qm

∂z
{K(

∂qm
∂z

−Mf(um0, Tm0, ...))} + c(qobs − qm) (39)

where qobs is the observed humidity (at any level z where an observation is taken) that
is the sum of the true q and observational noise. c is a coupling (“nudging”) coefficient.
Similar equations govern the evolution of temperature T , wind speed u, and other
model variables, but the parameter M is thought to enter only the humidity equation
(39).

In accordance with the general rule (34), M for the model was made to vary with
observational input as:

Ṁ ∼ −
∂K

∂z
f(um0, Tm0, ...)(qobs(z) − qm(z)) (40)

for the case of observations taken at just one level z.
Repeated convergence of M to its true value, each time followed by a burst away

from synchronization, is seen in Fig. 17.5.

3.3 Stochasticity for global optimization and model learning:
a heuristic

In complex cases, where there are multiple zeros of L̇ corresponding to local optima,
a stochastic component (in the parameters) may be necessary to allow parameters to
jump among multiple basins of attraction so as to reach the global optimum (Fig. 17.6).

To illustrate the utility of added noise in optimizing synchronization patterns, we
turn to a synchronized oscillator (“cellular neural network (CNN)”) representation of
the travelling salesman problem. The representation generalizes an older one due to
Hopfield and Tank (1985) a traditional neural network, fully interconnected, with fixed
weights chosen so that the globally optimal state corresponds to a shortest-distance
“tour” among a collection of cities with a pre-specified distance for each pair of cities.
In this original representation, for a collection of 5 cities, one considers a 5× 5 matrix
of binary values, where the rows correspond to cities and the columns correspond to
slots, 1 through 5, in the tour schedule. A tour is any pattern of 0’s and 1’s, such that
there is exacly one 1 in each row (exactly one city visited at a time) and one 1 in each
column (each city visited exactly once). For instance the tour depicted in Fig. 7a is
ECABD. There is a 10-fold degeneracy in optimal patterns (shortest-distance cyclic
tours) due to arbitrariness in the selection of the starting city and the direction of the
tour. The travelling salesman problem, in this representation or any other, is difficult
because of the multiplicity of local optima.
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Fig. 17.5. The variable model parameter M converges to the true value MT with repeated “burst-
ing”, in the dynamical parameter adaptation scheme that only requires a single realization
(M −MT is plotted). Results are unstable, but even for this case, where observations are only
assimilated at one point, the correct value of the parameter can be identified. (State variables
also do not converge completely over the time interval shown.)

Fig. 17.6. Deterministic parameter estimation rules cause parameters to reach local optima of the
Lyapunov function L. Stochasticity (e.g. in a simulated annealing algorithm) allows jumps
among different basins of attraction.

The representation considered here is a 5× 5 array of coupled periodic oscillators.
A tour is specified by a synchronization pattern in which all oscillators in each row
and each column are desynchronized, and such that for each oscillator in each column
(row), there is exactly one oscillator in each column (row) that is synchronized with it.
In Fig. 17.7b, the same tour ECABD is depicted in the new representation, simultaneously
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Fig. 17.7. In the original Hopfield representation (a), a tour (here ECABD) is specified by the
collection of units that are “on”, provided there is only one “on” unit in each row and only one in
each column. In the CNN representation (b) equivalent cyclic permutations of the same tour are
simultaneously represented as sets of 5 units that are synchronized, with an analogous proviso.
Units with the same relative phase are shown in the same color. (Dash marks are included to
distinguish ambiguous colors in the grayscale version.)

with equivalant tours given by cyclic permutations of cities: CABDE, ABDEC, etc.
There is now only a two-fold degeneracy in optimal patterns, due to arbitrariness in
direction.

To solve the travelling salesman problem in the representation we have described,
let each oscillator be given by a complex number zij (i = 1, . . . 5, j = A, . . . E) that
contains both a phase arg(zij) and an amplitude |zij |. Assume all oscillators have the
same frequency ω and make the replacement zij → exp(−iωt)zij , so that only the
relative phases are represented in the complex quantities zij . The Lyapunov function
we seek to minimize is:

L = A
∑

ij

(|zij |
2 − 1)2 +B

∑

ij

(

(

zij
|zij |

)5

− 1)2 − C
∑

i

∑

jj′

∣

∣

∣

∣

zij
|zij |

−
zij′

|zij′ |

∣

∣

∣

∣

2

−D
∑

j

∑

ii′

∣

∣

∣

∣

zij
|zij |

−
zi′j
|zi′j |

∣

∣

∣

∣

2

+E
∑

i

∑

j

∑

j′

djj′Re(
zij
|zij |

z∗i+1,j′

|zi+1,j′ |
) (41)

where asterisks denote complex conjugates, and we close the tours by defining z6j ≡
z1j . The first term, with coefficient A, tends to force |z| = 1. The second term, with
coefficient B tends to force z to one of five phase states, corresponding to the fifth
roots of unity. The terms with coefficientsC andD penalize for synchronization within
each row and within each column, respectively. The last term, expressed in terms of
distances djj′ between cities j and j ′, is easily seen to be minimized when each partial
sum

∑sync over synchronized oscillators at i, j and i+1, j ′ (i.e. for which arg(zij) =
arg(zi+1,j′)),

∑sync

ijj′ djj′ is minimized, that is when the specified tour has shortest
distance.

If the oscillators are governed by equations

żij = −
∂L

∂z∗ij
, ż∗ij = −

∂L

∂zij
(42)
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Table 17.2. Relative phases (from −π to π) of oscillators in the 5 × 5 CNN representation of the
5-city travelling salesman problem, after reaching a steady state. No tours are evident.

slot in schedule
1 2 3 4 5

A -2.47002 -2.18725 -0.14433 1.28413 1.28601
B 2.49589 -1.22075 1.40448 -2.48385 -0.01186

city C 1.23951 2.64314 -2.61880 0.00870 -1.22135
D 0.00406 1.08844 -2.63690 -1.27138 2.53321
E -1.29235 1.11239 0.04947 2.51944 -2.52968

Table 17.3. Relative phases as in Table 17.2, but with noise of steadily decreasing amplitude inc-

cillators with relative phase −2π/5 ≈ −1.28. Permutations of the same tour are represented by
other collections of oscillators with approximately equal relative phases. ADEBC is indeed the
shortest-distance tour for the pre-specified table of distances (djj

′ ) that was arbitrarily selected.

slot in schedule
1 2 3 4 5

A -1.28206 0.03570 1.23972 2.49383 -2.52120
B 1.23280 2.48519 -2.49996 -1.31980 -0.01645

city C 0.03447 1.27973 2.52424 -2.53673 -1.25935
D -2.49808 -1.29343 -0.01308 1.19502 2.50160
E 2.49330 -2.42328 -1.19018 0.04572 1.28507

following Hoppensteadt (1996), then the derivative of the Lyapunov function L̇ =∑

ij [(∂L/∂zij) żij + (∂L/∂z
∗
ij) ż

∗
ij ] = −2

∑

ij |zij |
2
≤ 0, so that the cost function

is monotonically decreasing and must reach at least a local minimum, since L can be
easily seen to be bounded below.

The point of this lengthy description is that the network as described almost never
reaches a global minimum, or even a state defining a tour. For a given set of pre-
specified distances (not shown) the network reaches a phase state shown in Table 17.2.
However, if gaussian noise is added to the dynamics

żi = −
∂L

∂z
∗
ij

+ ξ, ż
∗
ij = −

∂L

∂zij
+ ξ

∗
(43)

where ξ represents complex gaussian noise, then the system attains the tour state shown
in Table 17.3,which furthermore is the shortest-distance tour, provided that the amplitude
of the noise (an analog “ temperature”) must be decreased slowly enough. This tech-
nique of “simulated annealing”, which had also been applied in the original Hopfield
representation, is effective in selecting one of a small number of global optima (pre-
cisely 2 × 5! = 240) out of 5

25
phase states. (The term in (41) restricting the phase of

each oscillator to one of five values, can be dropped, but the the temperature must be
lowered even more slowly to attain a globally optimal pattern.)

The complexity of this combinatorial example far exceeds that of most parameter
estimation problems, in which there are usually only a small number of local optima.

luded in the oscillator dynamics (43). The tour found, ADEBC, is seen by focussing attention on os-
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But the example suggests that simulated annealing could perhaps be extended to a
genetic algorithm that would make random qualitative changes in the model as well,
until synchronization is achieved. The approach to model learning thus defined is in
keeping with the suggestion that synchronicity is a useful paradigm for the relationship
between reality and a computational model.
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